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ABSTRACT

The Monte Carlo method(MCM) is employed to study the radiative interactions in fully

developed laminar flow between two parallel plates. Taking advantage of the characteristics

of easy mathematical treatment of the MCM, a general numerical procedure is developed for

nongray radiative interaction. The nongray model is based on the statistical narrow band model

with an expoential-tailed inverse intensity distribution. To validate the Monte Carlo simulation

for nongray radiation problems, the results of radiative dissipation from the MCM are compared

with two available solutions for a given temperature profile between two plates. After this

validation, the MCM is employed to solve the present physical problem and results for the bulk

temperature are compared with available solutions. In general, good agreement is noted and

reasons for some discrepancies in certain ranges of parameters are explained.
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NOMENCLATURE

Latin Symbols

eb03

h

k

P

qR

qw

R

S

T

Tw

Tb

u

v

x

Y

Greek symbols

o_

7

6

0

0b

K

top

Planck function, (W-cm2)/cm -t

equivalent heat transfer coefficient, W/cm2.K

line intensity to spacing ratio; also thermal conductivity, erg/cm-sec-K

gas pressure, arm

radiative flux, W/cm 2

wall heat flux, erg/(cm2.s)

random number

integrated band intensity, arm !.cm -2

temperature, K

wall temperature, K

bulk temperature, K

streamwise velocity, cm/sec

transverse velocity, cm/sec

flow direction

transverse direction

thermal diffusivity, cm2/sec

line width to spacing ratio

half-width of an absorption line, cm -!

--I
equivalent line spacing, cm

emissivity

dimensionless temperature, (T-Tw)/(qwL/k)

dimensionless bulk temperature

absorption coefficient, cm -I

Planck mean absorption coefficient, cm "!

dimensionless coordinate, y/L
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reflectivity; also density, g/cm 3

wavenumber, cm- 1

vii



LIST OF FIGURES

Fig. 2.1 Laminar flow between parallel plates with constant wall heat flux.

Fig. 4.1 Temperature profile.

Fig. 4.2 Comparison of radiative dissipation in pure [t2 ° for L=0.O5m,

p=pH2o=l.0atm.

Fig. 4.3 Comparison of radiative dissipation in pure It20 for L=0.5m,

p= plv2o = 1.0a tin.

Fig. 4.4 Comparison of gray and nongray solutions for C02 at P=I aim.

Fig. 4.5 Comparison of gray and nongray solutions for CO2 at Tw=1000 K.

Fig. 4.6 Comparison of gray and nongray solutions for 1t20 at P=I atm.

Fig. 4.7 Comparison of gray and nongray solutions for H20 at Tw=lO00 K.

,,,
VIII



!. INTRODUCTION

There is a renewed interest in investigating various aspects of radiative energy transfer in

participating media. Radiative interactions become important in many engineering problems

involving high temperature gases. Recent interest lies in the areas of design of high pressure

combustion chambers and high enthalpy nozzles, entry and reentry phenomena, hypersonic

propulsion, and defence oriented research.

Analyses and solutions of practical problems involving radiative interactions with other

modes of heat transport require efficient and versatile numerical techniques. Many available

methods are based on procedures developed for the analysis of radiative transport. These include

P-N method, discrete ordinate method, zoning method, finite element method, and Monte Carlo

method (MCM). A review of the slate of available solution techniques is given by ttowell (1988).

The MCM is a probabilistic method which can exactly simulate all important physical

processes. In this method, the mathematical treatment of numerical analysis is easy and the

difficulty for radiative transfer problems in complex geometries can be circumvented easily. It

is due to these advantages that the MCM has been applied to solve many radiative transfer

problems. The earliest application of this method on radiative transfer problems was made by

Flowell and Perlmutter (1964a). Radiative problems of increasing complexity which have been

investigated by this method have appeared in the literature (Perlmutter and Howell, 1964; Howell

and Perlmutter, 1964b; Steward and Cannon, 1971; Dunn, 1983; Gupta et al., 1983; Taniguchi

et al., 1991). Studies on reducing the computational time by using this method are also available

(Kobiyama et al., 1979; Kobiyama et al., 1986). The gray gas assumption, however, is made in

most radiative transfer analyses. In many practical applications, this approximation is too crude

to provide quantitative predictions. This is because, in most cases, the gas radiation properties

strongly depend on the wavenumber.

The application of the MCM for analysis of radiative transfer in real gases has received

little attention, ttowell and Perlmutter (1964) are the first to take into account the effect of
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nongray radiation. The spectral absorption coefficient of hydrogen at very high pressure and

temperature was obtained by experimental procedures and used for analysis of radiation by the

MCM. Another technique which approximates a real gas by the weighted-sum-of-gray-gases

approach was also modeled using the MCM (Steward and Cannon, 1971). Recently, Taniguchi

etal. (1991) have applied a simplified form of the Elsasser band model to investigate the problem

of radiative equilibrium in a plane-parallel system. It is pointed out that the temperature profile

in the gas layer can be predicted accurately by the MCM.

']'his work is motivated by our interest to apply a general and accurate nongray model

to investigate radiative interactions using the MCM. Consequently, a statistical narrow band

model with an exponential-tMled-inverse intensity distribution is applied to calculate gas radiative

properties in the present study. Consideration of the major infrared bands and evaluation of line

parameters of these bands simulate the true nature of participating species and transfer processes.

These properties are used to solve radiative transfer problems by the MCM. As an example of

the application of the statistical nnrrow band model with the Monte Carlo method, radiative

interactions in fully de,eloped laminar flow between two parallel plates are studied. The reason

for choosing this case is the availability of approximate solutions in the literature (Tiwari, 1985;

Tiwnri et al., 1990). Before this application, however, the radiative dissipation solution obtained

from the MCM is compared with that from other methods in order to establish the validity of

the MCM for nongray radiative analyses.



2. TIIEORETICAL FORMULATION

The physical problem considered is the steady-state energy transfer in laminar, incompress-

ible, constant properties, fully developed flow of absorbing-emitting gases between two parallel

plates (Fig. 2.1). The condition of uniform surface heat flux is assumed such that the surface

temperature varies in the axial direction. The energy equation for this case can be expressed as

(Cess and Tiwari, 1972; Sparrow and Cess, 197g)

( OT OT) "02T Oql_ (2.1)

where u and v denote the x and y components of velocity, respectively.

For a fully-developed flow, v=0, and u is given by the well-known parabolic profile as

u = 6urn({ -{2); {=y/L (2.2)

where Um represents the mean fluid velocity. Also, for the flow of a perfect gas with uniform

heat flux, OT/Oz is constant and is given by

OT/Oy, = (2aqw)/(umLk) (2.3)

A combination of Eqs. (2.1)-(2.3), therefore, results in

k 02T OqR 12qw (2.4)
oy--v - -Oy r (_- +_)= o

Equation (2.4) is the governing energy equation for the parallel plates geometry. The boundary

conditions for this problem can be expressed as

OT (2.5)
r(0) = T(L)= T,.; -bT(V= t_/2)=0

It should be noted that all boundary conditions given in Eq. (2.5) are not independent, any two

convenient conditions can be used to obtain specific solutions.

The radiative transfer term in the energy equation makes computation difficult because it

turns the differential equation into an integro-differential equation. One exception is for the case
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of a gray medium. In this case, the equation for radiative transfer is expressed as (Sparrow

and Cess, 1978)

1 02qft(y) 9 30T 4 (2.6)
"_qR(Y) = -o'_Oy2 2 Oy

where 'co is the Planck mean absorption coefficient. For black walls and Twl=Tw2, the boundary

conditions for Eq. (2.6) become

3qR(L/2) = 0; -_qR(O) = (OqR/Oy)y=O (2.7)

In the present study, attention is directed to apply the MCM to solve the radiative transfer

term for nongray as well as gray media. Before going into detailed numerical analysis to solve

the energy equation as well as the radiative transfer term, it is essential to define the quantity of

primary interest and choose the appropriate radiative transfer models.

For incompressible flow problems, the quantity of primary interest is the bulk temperature

of the gas. For a fully-developed flow between parallel plates, this is expressed as

1

Ob = (Tb - Tw)/(qwL/k) = 6 / 0(_)(_ d)d (2.8)

0

where qw = [_(Tw - Tb), and h represents the equivalent heat transfer coefficient(W/cm2--K).

The study of radiative transmission in nonhomgeneous gaseous systems requires a detailed

knowledge of the absorption, emission and scattering characteristics of the specific gas. Several

models are available in the literature to represent the absorption emission characteristics of

molecular species. The gray gas model is probably the simplest model to employ in radiative

transfer analyses. For a nonuniform temperature field, the mean absorption coefficient used for

the optically thin radiation is the modified Planck mean absorption coefficient which for black

bounding surfaces is defined as (Tien, 1968; Sparrow and Cess, 1978; Tiwari, 1992)

_m(T, Tw) = tcp(Tw)(Tw/T) (2.9)



where np(T) representsthe Planck meanabsorptioncoefficient.

homogeneousgas, no(T) is expressedas

n

5

For a multiband system of a

(2.10)

fwf =ezpl-_(_(lq-2rz_P'[c ) -1)]
(2.12)

where xj represents the mole fraction of the absorbing species j and P is total pressure; k" and

/3 = 2r5'/6 are the band model parameters which take into account the spectral structure of the

due to gas species j, averaged over [w---(Aw/2), w+(A_/2)], is then given by

i---1

where n represents the number of vibration-rotation bands, et,(o-,i, T) is the Planck function

evaluated at the ith band center, and Si(T) is the integrated band intensity of the ith band.

Equation (2.10) is modified to apply to a mixture of different gases as

xp(T) = E pj{ _[eb(wi,T)Si(T)] } /(trT 4) (2.11)
j i=1 j

where j denotes the number of species in the mixture and Pj is the partial pressure of jth species.

In many practical applications, the radiative transfer by hot molecular gases such as H20 and

CO2 involves vibration-rotation bands that are difficult to model by a gray gas model due to the

strong wavenumbet dependent properties of the bands. In such cases, an appropriate nongray

gas model needs to be invoked.

The nongray gas models include line-by-line models, narrow band models, and wide band

models. The solution of line-by-line formulation requires considerably large computational re-

sources. The wide band model and band absorptance correlations also present some disad-

vantages (Zhang et al., 1988). Various wide and narrow band models have been tested with

line-by-line calculations (Soufiani et al., 1985; Soufiani and Taine, 1987). Accurate results for

temperature and heat flux distribution are obtained with the narrow band model which assumes

the absorption lines to be randomly placed and the intensities to obey an exponential-tailed-

inverse distribution. The transmissivity of a homogeneous and isothermal column of length !
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gas. Parameters /¢ and 1/$ generated from a line-by-line calculation have been published for

I-t20 and COa (Ludwig et al., 1973; Hartmann et al., 1984; Soufiani et al., 1985). The mean

half-width _, is given by (Soufiani et al., 1985)

qn, o = 0.066-_--_, 7.0xtf, o--f + [1.2(aUto + :rN,)

+0.Sxo,+l.6xCO2] (_) (2.13)

and

5'co, = _ [O.07zco_ + O.058(zg_ + zoo) + O.15zn_O

+O.15xn20] (2.14)

where Ps and Ts designate standard pressure and temperature(1 arm, 296 K).

For a nonisothermal and inhomogeneous column, the Curtis-Godson approximation leads

to accurate results if pressure gradients are not too large. Basically, this approach consists of

transformation of such a column into an equivalent isothermal and homogeneous one. Effective

band model parameters /% and /3e are introduced by averaging ]¢ and /3 over the optical path

U of the column as

I

v(t) = f P(u)x_(u)au
o

(2.15)

i

,/k, = u(t---5 P(y)x_(y)Yc(u)ay
o

(2.16)

!

1/_ = k_u(t'-----5P(u)_(u)_(y)B(y)au
o

The transmissivity of this equivalent column is then calculated from Eq. (2.12).

(2.17)



- ;I dx I_

y _----2-2__ u

//

--_- T + dx

"CONST.qw

Fig. 2.1 Laminar flow between parallel plates with constant wall heat flux.



3. NUMERICAL ANALYSIS

There are two levels to the numerical method proposed here. The first is concerned with

the finite difference discretization and solution of the energy equation, while the second is due

to the numerical evaluation of the radiative flux term that is included in the energy equation.

The energy equation, Eq. (2.4), is discretized by a finite volume technique. The domain

between two parallel plates is divided equally into N finite volume elements. For the ith finite

volume element 6Vi, the energy equation can be written as

ri+l -- 2Ti + Ti-1 i2qwAyk
L

i

Ay

+Qv-6v_ + Qa-_v_ - Qt_ = 0 (3.1)

where the conductive heat transfer is discretized by the central difference scheme and the radiative

heat transfer consists of Qv-6vi, QA-6Vi and Q6vi terms. The quantity Qv-6v_ is the total radiant

energy absorbed in 6Vi which was emitted by all volume elements in the domain including tSVi

itself, QA-6Vi is the total radiant energy absorbed in 6Vi which was emitted by all surfaces, and

Q6vi is the radiant energy emitted by 6Vi. Since the temperatures of two parallel plates are

given, the energy balances result in a set of simultaneous equations equal to the total number

of finite volume elements. Each equation contains the unknown quantity temperature which

cannot be calculated by independent means, sn an iterative solution is necessary. Before going

to the analysis of energy solution, it is essential to evaluate the radiative energy interchange

in each equation.

The typical method for handling radiative interchange between elements of volumes and/or

surfaces is to evaluate the multiple integrals which describe the interchange by some type of

numerical integration technique. This, usually, is a good approach for simple problems. An

alternative method is used here. Radiative emission in the domain is simulated using the MCM

to obtain Qv-6vl and Qn-6vi directly.

The MCM uses bundles of energy to simulate the actual physical processes of radiant

emission and absorption of energy occurring in the domain. The energy per bundle is simply
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some fraction of the total or net radiant energy emitted throughout the domain per unit time. The

history of an energy bundle from its emission until it is finally absorbed is determined by a series

of random numbers which are generated every time a decision with respect to position, direction,

wavenumber, path length, reflection or absorption is required. The relationships between the

random number and position, direction, wavenumber, path length, reflection or absorption have

been developed by Howell (1968) and Siegel and Howell (1981). For gray media, the spectral

dependence of the energy bundle is neglected, so the simulation processes are little simpler.

But when the effect of spectral properties is taken into account, the difficulty of the simulation

processes increases.

First, we need to determine the radiant energy Q^i of surface Ai which is supposed to be

absorbed by the volume elements and the radiant energy Qsvl emitted by the finite volume

element 5Vi. For the narrow band model, the absorption bands of the gas are divided into

spectral ranges A0., wide; each is centered at w k and characterized by the superscript k; Aw is

chosen in such a manner that the Planck function e_z(T) is constant in the range [w--(Aw/2),

w+(Aw/2)]. Then, QAi is given as

QA, = (3.2)
k

where ei is the emissivity of surface Ai. The radiant energy Q6vi in the ith finite volume

element is expressed as

Q_v_ = 4 E%°'(Ti)[i(lk -_)gdtt
Ao.,.51%

(3.3)

where # is the cosine of the angle between the y axis and the direction of a column. The quantity

"_,,,k is the mean spectral transmissivity of a column of length Ay/g in the kth band.

When an energy bundle is emitted from the ith volume element, its wavenumber is determined

from

R_ = o (3.4)
Q_v,
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where Rw is a random number. The transmissivity _ in Eq. (2.12) is the value averaged over

the spectral range Ao., and is different from spectral transmissivity ro_. But, rw can be taken

to be equal to the _,k, and this is treated as spectral transmissivity at the center of band if w

is in the region of the kth band. Equation (3.4) is solved for w each time an Rw is chosen.

The computing time becomes too large for practical calculations since both rw and e_,._ are

very complex functions of w and the number of bundles usually is very large. To circumvent

this problem, interpolation and approximation methods are employed. We first choose different

values of w and obtain the corresponding values of Rw from Eq. (3.4). Then, a smooth curve

is constructed to match these data points, and w values are easily obtained from this curve for

selected values of Rw. This work is accomplished by using cubic spline interpolation CSDEC

in IMSL Library Package ( Anonymous, 1987). Similar calculation procedures are applied to

determine wavenumber when an energy bundle is emitted from a surface.

For variable properties along the optical path, the distance X the energy bundle travels before

absorption in the gas is given by (ltowell, 1968; Siegel and Howell, 1981)

l, Rt = 1 + / - a (3.5)

where _t and _ are the mean Curtis-Godson parameters averaged over the distance X. When

solving this equation numerically, X values are assumed and k'P and _r are calculated for different

X values until the right side of the equation is equal to the left side. But if radiative properties

are constant along the optical path, the X values can be evaluated directly by solving Eq. (3.5).

The methcxt for determination of the direction, reflection or absorption of ari energy bundle for

nongray radiation problems is similar to gray radiation problems for isotropic media and diffusive

surface; the details of the procedure are given by ttoweil (1968) and Siegel and Howell (1981).

The temperature distribution in the domain is assumed before Monte Carlo simulation of

radiative interchange begins. The total number of energy bundles in each finite volume or

surface element is proportional to its radiant energy. Every energy bundle is followed according

to the above formulations until absorption occurs. A large number of bundles is considered to



11

satisfactorily represent the radiation emitted by a volume or surface element. The total number

of energy bundles absorbed by each element multiplied by the energy per bundle gives the

interchange of radiation among the volume and /or surface elements. For the ith element, the

total number of energy bundles absorbed multiplied by the energy per bundle gives Qv-_vi and

QA-_V_"

From the Monte Carlo simulation, Qv-6xa and QA-6Vi are obtained based on the assumed

temperature distribution; a new temperature distribution, which is included in convective and

conductive heat transfer as well as in Q6vi, is obtained by solving a set of non-linear equations.

This work is accomplished by using the NEQNF routine which solves a system of non-linear

equations in IMSL Library Package (Anonymous, 1987). The change in local temperature in

each iteration of the calculation is determined and when the maximum change is less than l0 --4,

the solution is considered to have converged.
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4. RESULTS AND DISCUSSIONS

Based on the theoretical and numerical analysis described in the previous sections, two

computer codes were developed to solve nongray radiation problems. The calculation was

carried out on a Sun Workstation. In order to validate the MCM for nongray participating

media, a code was written first to evaluate the radiation dissipation term, -cgqR/cgy, for the

case of water vapor between two parallel plates with constant emissivities. The same physical

problem has been considered previously and different solutions have been obtained (Zhang et

al., 1988; Kim et al., 1991) with the narrow band model used in this study. The Monte Carlo

solutions are obtained and compared with the available solutions. This is essential for code

verification before the MCM is employed to solve the problems involving radiative interactions

with other modes of heat transfer. Usually the only difference for most numerical methods for

radiation problems is in the evaluation of the term -OqR/cgy •

A nearly parabolic temperature profile ( Fig. 4.1) used by Zhang et al. (1988) and Kim

et al. (1991)is also used here to calculate the radiation dissipation term, --OqR/OY. The plate

spacing is divided into 20 unifi_rvn finite volume elements for the numerical calculation. The

total number of energy bundles is 50,000 and the CPU time is on the order of 1000s for each

physical problem. Figure 4.2 shows the comparison of the Monte Carlo solutions and results

of Zhang et al. (1988). The plates spacing is assumed to be 0.05 m and the pressure of water

vapor is 1.0 atm. The reflectivities of two plates are assumed to be equal, and two cases with

different reflectivities are taken into account. For each case, it is found that in the regions near

the plates, the Monte Carlo solution is little lower than the correlated and non-correlated results

of Zhang et al. (1988). The correlated results are the results in which the correlations between

the radiating gas property and the intensity are taken into account. In the central region of the

plates, the Monte Carlo results are essentially between the correlated and non-correlated results.

Figure 4.3 shows the comparison of the Monte Carlo solutions and S-N discrete ordinates

solutions by Kim et al. (1991) for the case with equal reflectivities of the two plates (Pl =
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P2 =0.5). The plate spacing and vapor pressure are kept at 0.5 m and 1.0 atm, respectively. The

Monte Carlo solution agrees well with the S-N discrete ordinates solution in the region near the

plate. In the central region, a little difference between the two solutions is noted, with the Monte

Carlo solution being slightly higher. A unsymmetrical case with different plate reflectivities

Pl = 0.9, p2 = 0.0 was also considered (see Tiwari and Liu, 1992). A very good agreement

between the two solutions was noted in all regions. These solutions are not shown in Fig. 4.3

because of clarity. From the comparisons presented in Figs. 4.2 and 4.3, it is concluded that the

Monte Carlo solutions agree very well with other solutions and the method can be employed to

solve the nongray radiation problems accurately.

After the validation of the MCM, a second code was developed to consider the gray and

nongray radiation problem combined with conductive and convective heat transfer. For the case

of black walls, gray analytical solutions and nongray approximate solutions based on the method

of variation of parameters are available in the literature (Tiwari, 1985 and 1992; Tiwari el al.,

1990). In this study, the Monte Carlo solutions are compared with these result_ for identical

conditions. The absorbing--emitting media considered are pure H20 and CO2. The results are

expressed in terms of the non-dimensional bulk temperature. The plate spacings considered range

from 0.01 cm to 100.0 cm. The domain is divided into 40 finite volume elements with equal

thicknesses. The total number of energy bundles selected is 50,000 for nongray and 200,000

for gray simulation. The amount of energy per bundle depends on the temperature. One of the

important parameters related to the temperature distribution is the heat flux from the plates; care

should be taken to choose this heat flux. In the solutions of Tiwari (1985 and 1992) and Tiwari

el al. (1990), the assumption of linearized radiation was made and the radiative properties were

considered to be independent of temperature. In order to facilitate the comparison between the

Monte Carlo solution and the approximate solution, different values of heat flux at the wall are

chosen when the plate' spacings change. The CPU time requirement for a converged solution

with a specific plate spacing is on the order of ten seconds for the gray case if the differential

emissive power emission method (DPE melhod-Kobiyama el al., 1979; Kobiyama et al., 1986)
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is applied and on the order 1000 seconds for the nongray case. The numerical experiments

conducted in this study indicate that the DPE method can reduce the CPU time about an order

of magnitude compared to the normal method without loss in the accuracy of results.

Figures 4.4 and 4.5 show comparisons between the gray analytical solutions, nongray

approximate solutions, and the corresponding Monte Carlo solutions for different temperatures

and pressures. The medium considered is CO2. In Fig. 4.4, the pressure of CO2 is kept at

1.0 arm but plate temperature changes as 500 and 1000 K for the gray and nongray cases. In

Fig. 4.5, the wall temperature is kept at 1000 K but the pressure changes as 1.0 and 5.0 arm.

The figures show that the predictions by the MCM are very close to the analytical solutions for

gray cases at different temperatures and pressures. For nongray cases, the Monte Carlo solution_

compare favorably with the approximate solutions. However, some differences are also noted.

In the intermediate optical regions, the predictions by the MCM are a slightly higher. Figures

4.6 and 4.7 show the results for I10 2 . The physical conditions are the same as for Figs. 4.4

and 4.5, respectively. Simillar to the results of CO2, excellent agreements are found for the

gray cases. For the nogray cases, the agreement between different solutions appears better in

the optically thin region than other optical regions. The predictions by the MCM are usually

higher than those by the approximate solutions.

Form the comparative results presented in Figs. 4.4-4.7, a correct trend is seen for the

Monte Carlo solution and a good agreement is noted between the predictions of the MCM

and other methods for the two gases at different temperatures and pressures. Obviously, the

agreement between solutions for nongray medium is not as good as that for the gray medium.

There are several reasons that contribute to this trend. First, in the approximate solutions, the

exponential kernel approximation was employed in the radiative flux equation, and the energy

equation was solved by the method of variation of parameters which is also an approximate

method. But, the MCM exactly simulates the radiative interchange process and the solution of

the energy equation is also accurate. Second, in the approximate solution, the exponential wide

band model was employed, the spectral discretization was too wide and this leads to errors in the
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radiative flux distribution for some optical lengths. But in the MCM, the relationship between

the spectral properties and wavenumber is considered in an exact manner. Third, the exponential

wide band model is based on the narrow band model. If the total band absorptance is evaluated

based on numerical quadrature from the narrow band model and compared with that obtained

by the exponential wide band model, the difference is quite obvious. A_s for as the MCM itself

is concerned, a statistical error may still exist, although attempts are made to select statistical

quantities properly to deliberately reduce it.
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p=pH20=l.0atm.
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5. CONCLUDING REMARKS

The MCM is employed to study radiative interactions in steady fully developed laminar flow

of absorbing-emitting species between two parallel plates. Gray as well as nongray models for

radiation absorption are considered. The Monte Carlo solutions for gray medium are found to

be in excellent agreement with other solutions. The nongray formulation is based on a statistical

narrow band model with an exponential-tailed-inverse intensity distribution. The nongray results

using this model have been obtained for the first time in conjunction with the MCM. In general,

the results are in good agreement with nongray results of other studies. Some possible reasons

for differences between various solutions are provided.
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